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A B S T R A C T

Humans influence ecosystems on magnitudes that often exceed that of natural forces such as climate and
geology; however, frameworks rarely include anthropogenic disturbance when delineating unique ecological
regions. A critical step toward understanding, managing and monitoring human-altered ecosystems is to in-
corporate disturbance into ecological regionalizations. Furthermore, quantitative regionalization approaches are
desirable to provide cost-effective, repeatable and statistically sound stratification for environmental mon-
itoring. We applied a two-stage multivariate clustering technique to identify ‘EcoAnthromes’ across a large area –
the province of Alberta, Canada – at 30 m spatial resolution, and using primarily remotely sensed inputs. The
EcoAnthrome clusters represent regions with unique ecological characteristics based on a combination of natural
ecological potential (e.g., climatic and edaphic factors) and disturbance, both natural and anthropogenic.
Compared to existing expert-derived Natural Subregions in Alberta, the model-based EcoAnthromes showed
greater class separation and explained more variance for an assortment of variables related to land cover, dis-
turbance and species intactness. The EcoAnthromes successfully separated important ecological regions that are
defined by complex assemblages of topography, climate and disturbance, such as gravel-bed river valleys, boreal
forests, grasslands, post-fire recovery areas and highly disturbed agricultural, industrial and urban landscapes. In
addition to presenting a flexible method for EcoAnthrome regionalization, we group and describe the
EcoAnthromes created for Alberta and discuss how they can complement expert-derived regionalizations to aid
in environmental management efforts, such as species recovery planning and monitoring for threatened species.

1. Introduction

The extent and magnitude of human impact on ecosystems has in-
creased exponentially in response to rapid industrialization – as much
as three quarters of Earth's ice-free surface may be human dominated
and the majority of wild lands are limited to the coldest and driest
biomes (Ellis et al., 2010; though see Sayre et al., 2017 for a critique of
this supposition). Humans shape ecosystems at such a scale as to be
called a ‘force of nature’, rivalling the impacts of climate and geology
and warranting the proposition of a new geological epoch: the An-
thropocene (Ellis and Ramankutty, 2008; Steffen et al., 2011). Main-
taining ecosystem integrity to support wildlife and provide environ-
mental goods and services requires consideration of both natural and
human ecological forcing (Foley et al., 2005; Martin et al., 2014). Long-
term monitoring plans and conservation efforts need to account for
interactions between anthropogenic disturbances and natural drivers of

ecological processes (Martin et al., 2014); however, ecological re-
gionalization frameworks (e.g., ecoregions) rarely include anthro-
pogenic activities and influences in their delineation of unique en-
vironments.

Ecological regionalization maps are heavily utilized tools in en-
vironmental management and monitoring because they provide a useful
context for understanding ecological patterns and processes by separ-
ating broad environments into smaller regions that each have distinct
biotic and abiotic capacities to support ecosystem health and function
(McMahon et al., 2001). Ecoregions are often used as stratifying classes
during sampling, as covariates for modeling or to summarize and
compare results of data analysis, and they are fundamental to a wide
range of environmental management applications, such as conservation
and biodiversity monitoring (Guo et al., 2017; Leathwick et al., 2003;
Powers et al., 2013) and understanding fire dynamics (Amiro et al.,
2000). Historically, qualitative weight-of-evidence approaches have

https://doi.org/10.1016/j.jenvman.2018.12.076
Received 6 April 2018; Received in revised form 10 December 2018; Accepted 20 December 2018

∗ Corresponding author.
E-mail address: sean.kearney@alumni.ubc.ca (S.P. Kearney).

Journal of Environmental Management 234 (2019) 297–310

Available online 08 January 2019
0301-4797/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2018.12.076
https://doi.org/10.1016/j.jenvman.2018.12.076
mailto:sean.kearney@alumni.ubc.ca
https://doi.org/10.1016/j.jenvman.2018.12.076
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2018.12.076&domain=pdf


been the primary method used to map ecoregions, for example the
Canadian Ecological Framework (Ecological Stratification Working
Group, 1995), the ecoregions of the conterminous United States
(Omernik and Griffith, 2014) and the terrestrial ecoregions of the world
(Olson et al., 2001).

Given the rapid change occurring globally, ecoregion mapping has
become more important than ever, and recent work emphasizes the
potential to use remotely sensed data for quantitative mapping of
ecoregions to enable timely, accurate and repeatable monitoring pro-
grams (Fitterer et al., 2012; Hargrove and Hoffman, 2005; Metzger
et al., 2013; Snelder et al., 2010; Thompson et al., 2016). To date, most
quantitative regionalization approaches have limited their data inputs
to environmental variables representing climatic, topographic and
edaphic factors (Andrew et al., 2013; Fitterer et al., 2012; Hargrove and
Hoffman, 2005; Leathwick et al., 2003; Mackey et al., 2008; Metzger
et al., 2013, 2005; Thompson et al., 2016; Trakhtenbrot and Kadmon,
2005).

Human caused disturbance histories (e.g., fires, forest harvesting,
industrial and agricultural transformations, etc.) have significant im-
pacts on spatial-temporal patterns of ecological change (Pickell et al.,
2014), which in turn can be regionalized to inform management ob-
jectives – for example wildlife conservation in a landscape with active
resource extraction and recreation. However, examples of regionaliza-
tions utilizing data representing natural and anthropogenic dis-
turbances are scant and limited. The few existing examples have gen-
erally been at coarse spatial resolution (≥1 km) and have relied
primarily on proxies for disturbance such as population, land use and
land cover classes (e.g., Coops et al., 2009; Ellis and Ramankutty,
2008), or have focused solely on forest-change metrics (e.g.,
Bourbonnais et al., 2017; Powers et al., 2013). The use of discreet
proxies and population as disturbance proxies is problematic. For ex-
ample, in the widely cited publication by Ellis and Ramankutty (2008),
anthromes were classified as anthropogenic either as a definition of
their land use (e.g., settlements, cropland, rangeland) or based on po-
pulation density (e.g., populated forests). In some cases, such as the
large swaths of remote rangelands where human influence may be in-
consequential or non-existent, this approach may result in a substantial
overestimation of anthropogenic influence (Sayre et al., 2017). In other
areas, human activity is increasing far from population centers (e.g.,
recreation, hunting, oil and gas exploration, forest harvesting and re-
planting), and thus anthropogenic influence may be underestimated.

Advances in remote sensing technology and data access now allow
for the measurement of both naturally occurring and human generated
ecosystem constraints across large areas, over decadal time scales and
at fine spatial resolution (Bourbonnais et al., 2017; Pickell et al., 2014;
Powers et al., 2013). For example, the NASA Shuttle Radar Topography
Mission (SRTM) has provided a void-filled digital elevation model
(DEM) at 30 m spatial resolution, critical for derivation of detailed to-
pographic and climate variables. Likewise, the opening of the Landsat
satellite archive has enabled mapping of vegetation, forest disturbance
and other natural and anthropogenic variables over time and at fine
spatial scales (Hermosilla et al., 2015a; White et al., 2017), and satellite
imagery of nighttime light emittance can effectively capture the extent
of urban (e.g., Zhang et al., 2013) and industrial activity (e.g., Elvidge
et al., 2009) with unprecedented precision.

With data available, there is a new opportunity to create re-
gionalization frameworks that integrate massive and complex datasets
representing both natural and anthropogenic drivers of ecological
conditions, especially at finer spatial scales (< 1 km). We present a
quantitative, 30 m spatial resolution regionalization for the province of
Alberta, Canada as a case study, utilizing primarily remotely sensed
inputs that are freely available and account for both environmental and
anthropogenic influences and disturbances occurring over time. We use
the term ‘EcoAnthromes’ to define this regionalization, integrating the
anthrome concept first proposed by Ellis and Ramankutty (2008) with
quantitative fine-scale ecological regionalization methods.

We focus our approach on Alberta for several reasons. First, Alberta
is biogeographically diverse, with widespread and complex disturbance
patterns of both natural and anthropogenic origins. Human alteration of
many ecosystems is well documented (e.g., ABMI, 2017) and Alberta is
home to 33 endangered or threatened species, with another 17 species
of special concern (Government of Alberta, 2014). Second, the province
is relatively data rich. The provincial government and the Alberta
Biodiversity Monitoring Institute (ABMI) manage large databases of
publicly available spatial data related to anthropogenic activities, spe-
cies distribution and biodiversity. Additionally, annual gap-filled
Landsat reflectance mosaics developed for Canada provide a time series
of land cover and disturbance-related variables covering the entire
province (Hermosilla et al., 2015b).

We applied a two-stage multivariate clustering technique to map
EcoAnthromes across the province, representative of the period
2006–2015. EcoAnthromes were compared with the existing Natural
Subregions (NSRs) of Alberta for spatial overlap and statistical strati-
fication of important environmental variables (e.g., fire intensity,
overall species intactness) and anthropogenic activities (e.g., forest
harvesting intensity, nighttime lights). We then group and describe the
final EcoAnthromes and discuss the strengths and limitations of our
regionalization approach, as well as highlight specific applications,
such as species recovery monitoring and range planning.

2. Methods

2.1. Study area

The province of Alberta encompasses approximately 662,000 km2 in
western Canada (Fig. 1). Elevations range from 210 to 3747 m, with
high alpine and subalpine areas found in the Rocky Mountains along
the southwestern border with British Columbia, giving way to forested
foothills and agricultural prairies moving east, and a complex mosaic of
mixedwood boreal forest, shrublands and wetlands moving north
(Natural Regions Committee, 2006). Alberta is home to an array of
National Parks, Provincial Parks and other protected areas, which to-
gether cover about 14% of the province. Meanwhile, a legacy of for-
estry, mining and oil and gas exploration has a led to a dense network of
roads, pipelines and seismic lines. When these activities are combined
with agricultural and urban development, the ‘footprint’ of direct
human land use covers nearly a third of the province (ABMI, 2017). The
cumulative impact of these activities, combined with frequent and large
forest fires, have resulted in a fragmented mosaic of forest ages and
types, benefitting some wildlife species (e.g., coyotes), while also
raising concerns about the survival of others (e.g., grizzly bears and
woodland caribou) and the general loss of habitat integrity and timber
resources (Boulanger et al., 2014; Schneider et al., 2003). The hetero-
geneous mix of wild- and anthropogenic-dominated landscapes, com-
bined with complex conservation and natural resource extraction goals,
make Alberta a fitting study area for applying moderately-high spatial
resolution EcoAnthrome mapping techniques.

2.2. Data acquisition

For EcoAnthrome-regionalization, 19 variables representing cli-
mate, terrain, vegetation, disturbance and human activity were used as
inputs for the two-stage clustering process (Table 1). Ten of these
variables represent environmental influences on ecosystems, separated
into climate and terrain variables. The other nine represent land cover
and vegetation, natural and anthropogenic disturbances, and human
activities related to access (e.g., roads) and residential/industrial de-
velopment. Major water bodies and permanent ice were masked prior to
all analysis.

2.2.1. Climate
Climate is an important broad-scale stratification variable directly
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related to primary productivity, and is often the principal dis-
criminating input for ecological regionalization (Metzger et al., 2013;
Snelder et al., 2010). We created six climate variables using the Cli-
mateAB software, which interpolates from weather stations and eleva-
tion to create spatially contiguous climate maps (Mbogga et al., 2010).
We used a void-filled 30 m DEM (SRTM; downloaded from https://
earthexplorer.usgs.gov/) to predict 1971–2000 climate averages for
mean annual precipitation (MAP), mean annual temperature (MAT),
the temperature difference from mean warmest and coldest months
(TD), a summer heat/moisture index (SHM), growing degree days over
5 °C (DD > 5) and chilling degree days below 0 °C (DD < 0).

2.2.2. Terrain
Topographic terrain features are an important driver of ecosystems

at scales finer than climatic influences. We developed four terrain
variables, also from the SRTM-DEM: solar insolation, topographic
wetness, topographic position and sediment thickness. Solar insolation
provides an estimate of the amount of primary energy received from the
sun, accounting for variation in elevation, slope, aspect and shadows.
Topographic wetness represents surface water flows and accumulation,
and a topographic wetness index (TWI) was calculated as:

= f
s

TWI ln
tan (1)

where f is the upslope contributing area in meters and s is slope in
radians of a given pixel. Topographic position refers to the location of
an area relative to the broader landscape (e.g., ridge-top, valley bottom,
plain, etc.). A topographic position index (TPI) was calculated to create
a continuous variable representing the difference between the elevation
of a given cell and the mean elevation of the surrounding area. The TPI
was calculated for an annulus (doughnut-shaped) neighbourhood of

pixels at least 4 km and no more than 6 km from the center cell to
capture broad-scale physical geomorphic patterns (Weiss, 2001). Sedi-
ment thickness was also included as a continuous variable representing
parent material and underlying geology. We calculated sediment
thickness as the difference between bedrock elevation, as modeled by
the Alberta Geological Survey (MacCormack et al., 2015), and surface
elevation derived from the SRTM-DEM.

2.2.3. Land cover and vegetation
Land cover and vegetation reflect primary productivity potential

(e.g., climate and terrain), the impacts of recent and legacy dis-
turbances (e.g., fire, forest harvesting), and feedbacks between the two.
Therefore, these variables are critical inputs to account for the current
state of ecosystems. To represent land cover and vegetation as con-
tinuous variables, several transformations were derived for the
2006–2015 period from best-available-pixel (BAP) proxy composites of
surface reflectance from annual Landsat images (TM, ETM+ and OLI
sensors) acquired August 1, ± 30 days (Hermosilla et al., 2015b). The
BAP proxies were created by analyzing the entire available Landsat
time series (1984–2016) choosing the best pixel available based on data
quality criteria, flagging data gaps and anomalies (e.g., haze or cloud)
and infilling with temporally smoothed proxy values where required to
create a gap-free annual surface reflectance composite. We refer readers
to Hermosilla et al. (2015b) for a complete description of how BAP
proxies were developed.

Tasseled cap transformations of spectral brightness, greenness and
wetness were created from the Landsat proxies to account for land
cover, vegetation productivity and moisture. These transformations
have been shown to outperform common vegetation indices (e.g.,
NDVI) when analyzing forest disturbance and changes in vegetation
structure (Liu et al., 2016). A single set of coefficients was used in the

Fig. 1. Map of the study area. Land cover map of Alberta,
Canada for the year 2010 (ABMI, 2013). Percent of total
area by land cover class: Water = 4.5%, Snow/Ice = 0.2%,
Rock/Rubble = 1.9%; Exposed land = 0.4%; Devel-
oped = 3.9%; Shrubland = 13.1%; Grassland = 9.8%,
Agriculture = 19.7%, Coniferous forest = 26.2%, Broadleaf
forest = 15.7%, Mixed forest = 4.8%.
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tasseled cap transformation to maintain consistency across Landsat
sensors (Liu et al., 2016; Table A1). The normalized burn ratio (NBR;
Key and Benson, 2006) was also calculated to represent disturbance,
recovery and structure of vegetation. NBR has been shown to be better
related to structural complexity and long-term forest recovery following
disturbance compared to other vegetation indices (Pickell et al., 2016).
Finally, an index representing forest connectivity and fragmentation
was calculated as the product of the density and connectivity of treed
cells within a 33 × 33 cell window (∼100 ha), following methods de-
scribed by Riitters et al. (2002). Treed cells were identified as cells
within treed classes based on Landsat-derived land cover for the
2006–2015 period (Hermosilla et al., 2018).

2.2.4. Disturbance
We analyzed the year-on-year changes in vegetation from the

Landsat time series to account for historical disturbances that influence
ecosystem function. To do this, we calculated the standard deviation of
tasseled cap greenness and NBR over the 2006–2015 period. In this
manner, we account for the frequency and magnitude of changes within
herbaceous and forest-dominated vegetative land covers, which can
include year-on-year variation (e.g., annual cropping), vegetation losses
(e.g., forest harvesting) and new growth (e.g., reforestation, fire re-
covery).

2.2.5. Human activity
The land cover, vegetation and general disturbance variables cap-

ture detailed variation in land cover over space and time, however they
do not distinguish between anthropogenic and natural influences.
Therefore, two indices were developed to characterize anthropogenic
activity beyond the disturbance and alteration of vegetation.

The first index utilized nighttime lights (NTL) data captured by the
Defense Meteorological Satellite Program/Operational Linescan System
(DMSP/OLS), and represents urban, built-up and electrified infra-
structure and associated activity. NTL data was first calibrated, re-
sampled to 30 m resolution and corrected for vegetation and bare
ground using Landsat-derived tasseled cap greenness and the normal-
ized bare lands index (Li et al., 2017), respectively, following methods

similar to those proposed by Zhang et al. (2013). The NTL disturbance
index was then calculated based on the proximity, density and intensity
of corrected NTL values surrounding a given cell. Proximity was cal-
culated as the nearest cost-weighted distance (m) to a cell with a po-
sitive NTL value, with change in elevation and aspect included as ‘cost’
variables. A maximum distance of 12,616 m was imposed to roughly
delineate the maximum distance at which an urban area would directly
influence wildlife and habitat. This distance was chosen to correspond
with the home range of an average adult female grizzly bear (Alberta
Environment and Parks, 2016), representing a threatened species in
Alberta with a large home range. An exponential decay function was
then applied to the proximity value to reflect findings that proximity
impacts of roads and other human features on wildlife tend to decline
nonlinearly as distance to the feature increases (e.g., Eigenbrod et al.,
2009; Rogala et al., 2011). Density was calculated as the sum total of
pixels, weighted by their intensity (NTL value) within a 7440 m search
window, the approximate distance an adult female grizzly travels in a
day. The proximity and weighted density values were each rescaled
from 0 to 500 according to their respective minimum and maximum
values and added together, producing a final index scaled from 0 to
1000.

The second disturbance index represents ease of access to and uti-
lization of the landscape by people. This index was calculated based on
the proximity, density and intensity of select access features sur-
rounding a given cell. Access features were mapped by the Government
of Alberta (2017a), and we used the same method to calculate the ac-
cess disturbance index as that described for the NTL disturbance index,
except that weights were assigned based on feature type and their re-
lative expected facilitation of access. Feature types and their weights
are given in Table A2. Of the 19 input variables, the access index is the
only variable that was not based solely on remotely sensed data, as it
also relies on GPS data, hand delineation and digitization.

2.3. EcoAnthrome regionalization

We used two-stage multivariate clustering to perform the re-
gionalization, with the first step generating pre-clusters using a one-

Table 2
Percent area of each Natural Subregion and protected area within each EcoAnthrome. Columns indicate the percent of each EcoAnthrome (cut at 21 clusters) with
protected status (first row), and the breakdown of the percent area of each EcoAnthrome by Natural Subregion (NSR). Note that breakdown by NSR may not total 100
percent due to rounding.

EcoAnthromes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Protected area 2 5 3 48 0 0 3 0 41 16 3 2 79 83 0 49 1 56 80 2 22
Natural Subregions

Northern Mixedwood 4 4 19 17 16 11 13 5
Kazan Uplands 9 5 1 13 5
Boreal Subarctic 2 11 7 3 2 6 2
Lower Boreal Highlands 1 23 22 10 2 1 18 18 3 2 28 3
Central Mixedwood 14 55 56 28 9 6 1 36 35 9 50 4 18 39 20
Peace-Athabasca Delta 1 4 1 1 4
Athabasca Plain 1 6 4 1 49 2
Dry Mixedwood 24 11 14 6 41 21 3 18 4 4 2 20 10 11 9
Upper Boreal Highlands 4 1 6 8 4 4 1
Peace River Parkland 1 2 2 1 3 1 1
Lower Foothills 15 2 4 5 10 43 25 1 1 2 1
Upper Foothills 6 1 5 7 29 1 6 10 1
Subalpine 2 1 1 11 17 71 76 34
Alpine 83 7 10 65
Montane 5 1 5 16 3 1 1 1
Central Parkland 21 29 15 5 40 20 1 19
Northern Fescue 4 5 17 6 4 2 4 8
Dry Mixedgrass 1 22 61 8 59 29 9
Foothills Fescue 3 3 2 6 14 6 9 4
Foothills Parkland 3 1 1 4 1
Mixedgrass 1 2 2 17 12 33 13 5
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pass ‘k-means++’ algorithm, followed by agglomerative hierarchical
clustering on the centroids produced by the k-means pre-clustering step
(Tamura et al., 2014). Multivariate agglomerative clustering is one of
the most common quantitative ecological regionalization procedures
(Snelder et al., 2010) and the two-stage approach has been successfully
applied for ecosystem-related classification in Canada (Coops et al.,
2009; Fitterer et al., 2012; Guo et al., 2017; Thompson et al., 2016) and
elsewhere (Leathwick et al., 2003).

Prior to the initial k-means stage, outliers were removed and all
variables were re-scaled. To handle the very large dataset arising from
30 m spatial resolution across a large geographic extent and 19 input
variables, we used a mini-batch process to read the dataset in chunks
and perform clustering out of core. The dataset was first shuffled and
batches selected randomly to avoid spatial bias. The initial number of k-
means pre-clusters was set at 1001 to ensure an input of centroids to the
hierarchical clustering stage that was much larger than the desired
number of final clusters.

Hierarchical clustering was performed using the ‘Ward’ linkage al-
gorithm (Murtagh and Legendre, 2014; Ward, 1963) and Euclidian
distances between pre-cluster centroids. The resulting dendrogram was
then cut at 21 clusters using dynamic tree cutting to prune branches
based on their shape, rather than a fixed height (Langfelder et al.,
2008). Pruning was undertaken by iteratively adjusting the maximum
allowable proportional scatter of clustered objects until 21 clusters was
achieved, and the final map was filtered to remove singletons and very
small groupings (< 3 conterminous pixels). We chose to prune the
dendrogram at 21 EcoAnthrome clusters (i.e., regions) to facilitate
comparison against the 21 expert-derived NSRs of Alberta.

2.4. Comparison of EcoAnthromes and Natural Subregions

We compared spatial overlap and areal land cover distribution for
the EcoAnthromes and NSRs to evaluate how they differ, and better
understand the heterogeneity within NSRs. We expected that large
NSRs in areas prone to frequent fire and industrial expansion would be
comprised of a large number of EcoAnthromes and land cover classes,
indicating that some NSRs are highly heterogeneous and may be less
suitable for certain applications.

Overlap was evaluated in two ways: (1) a simple spatial overlap as
the total area of each class (i.e., EcoAnthrome cluster or NSR) from one
regionalization approach within each class of the other approach, and
(2) the diversity of overlap as the diversity of classes from one re-
gionalization within each class of the other. In the latter relationship,
higher diversity indicates lower correspondence between maps
(Thompson et al., 2016). Diversity was calculated as Simpson's Di-
versity Index:

=D
n n

N N
1

( 1)
( 1) (2)

where n is the number of classes from the comparative regionalization
approach within an individual class of the approach being evaluated,
and N is the total number of classes in the evaluated approach.

We also compared NSR and EcoAnthrome distinctness across im-
portant environmental and anthropogenic variables (see Table 2 for a
list of variables), as well as for the 2010 ABMI land cover map. Region
distinctness was evaluated based on the variance of each variable ex-
plained by each map. We analyzed, in turn, all of the input variables
used for the EcoAnthrome clustering, as well as three other metrics: two
related to specific disturbance types and one related to wildlife in-
tegrity. The two specific disturbance metrics represent fire and forest
harvesting events in the last 30 years. The fire and forest harvest
variables were calculated as the intensity of change in NBR attributed to
each type of disturbance, respectively, as identified using annual
Landsat proxies (Hermosilla et al., 2015a). The two variables were re-
scaled from 0 to 1000 based on the minimum and maximum and take

into account the entire time series going back to 1986, but weight more
recent events more heavily. The third metric represents overall species
intactness as mapped by ABMI (2014). Species intactness ranges from 0
to 100%, with 100% being the abundance expected in an area without
anthropogenic disturbance. The overall value accounts for different
responses to anthropogenic disturbance as modeled for different spe-
cies.

To calculate indicators of explained variance of a given variable for
each regionalization, linear regression analysis was performed on a
stratified random sample of values of each variable taken for each
EcoAnthrome cluster, NSR and land cover class. The sample size was set
at approximately one percent of all grid cells within each cluster or
NSR, with the condition that at least 10,000 cells, and no more than
1,000,000 cells be sampled. Each variable was used, in turn, as the
response variable and the categorical regionalization set up as con-
trasts. The coefficient of determination (R2) and residual standard error
(RSE) were then evaluated as indicators of the variance of each variable
explained by the EcoAnthrome clusters and NSRs, respectively.
Boxplots were also created for each variable and compared to the
overall mean value across all classes to visualize separation between
classes.

Total area, stratified by 2010 land use (ABMI, 2013), was calculated
for each NSR and each EcoAnthrome cluster to compare the sizes and
composition of regions within and between the two regionalization
approaches. The percentages of each EcoAnthrome within each NSR
and with protected status, as mapped by Global Forest Watch Canada
(2012), were also calculated.

2.5. Multivariate analysis of EcoAnthromes

In order to characterize the conditions represented by
EcoAnthromes, we assessed land use by cluster and used multivariate
analyses to visualize how clusters differed by climate, terrain, vegeta-
tion and disturbance. A heatmap of scaled input variables was aligned
with the dendrogram from the hierarchical clustering step to visualize
the relative values of each input variable by cluster and understand the
hierarchical structure of the clustering. Lastly, principal component
analysis (PCA) was performed to assess how the input variables are
related to each other, and to three additional metrics (fire, harvest and
species intactness), across the final EcoAnthrome clusters.

2.6. Software

Data pre-processing and k-means pre-clustering were performed
using ArcPy (Esri, 2014) and the scikit-learn package (Pedregosa et al.,
2012) in Python v2.7. Hierarchical clustering, regression and PCA were
performed using the stats packages in R v3.4.1 (R Core Team, 2016).
Dynamic branch pruning of the dendrogram to arrive at the final 21
clusters was performed using the R package dynamicTreeCut (Langfelder
et al., 2008).

3. Results

3.1. EcoAnthrome regionalization

The dendrogram of the initial 1001 pre-clusters is shown in Fig. 2,
split into 21 clusters (numbers are randomly assigned), where each
cluster represents a unique EcoAnthrome. Three broad groups are evi-
dent based on the branching structure and the input variable heatmap
(Fig. 2). These three broadest branching groups, highlighted in red,
roughly correspond to: Group 1 – areas in colder, extreme climates with
low levels of disturbance; Group 2 – areas with higher forest con-
nectivity and varying levels of disturbance, and; Group 3 – areas in
warmer climates with very low forest connectivity and high dis-
turbance. Group 2 is the largest, comprising about 44.6% of Alberta's
land area, while Groups 1 and 3 made up 16.8% and 38.6% of land

S.P. Kearney et al. Journal of Environmental Management 234 (2019) 297–310

302



area, respectively. The final 21-cluster EcoAnthromes (Fig. 3) resulted
in spatial patterns reflecting both land cover (Fig. 1) and the expert-
derived NSRs (Fig. A1).

EcoAnthrome clusters 13, 14, 18 and 19 are mostly within protected
areas (> 50%), while clusters 4, 9, 10 and 21 include some protected
areas and the remaining clusters are mostly outside of protected areas
(Table 2). Most protected areas (61%) correspond to Group 1, with
roughly a third in Group 2 and less than 5% in Group 3. In general,
EcoAnthrome clusters with greater anthropogenic disturbance (e.g.,
clusters 1, 15, 17) are spread across more NSRs, while clusters with
lower anthropogenic disturbance – located predominantly in the more
climatically extreme, rugged and protected areas (e.g., clusters 2, 3, 13,
14) – are more correspondent with a single NSR (Table 2).

3.2. Comparison of EcoAnthromes and Natural Subregions

Diversity of EcoAnthrome clusters was high (low class agreement)
across nearly all NSRs (Fig. 4). The mixedwood NSRs were the most
diverse in terms of EcoAnthromes, while the Foothills Parkland and
Alpine NSRs were the least diverse (Fig. 4 and Table A3). Larger NSRs
were more likely to be more diverse, though exceptions did exist (e.g.,
the Peace River Parkland).

The EcoAnthromes provided greater separation and explained more
variance for the majority of vegetation and disturbance-related cluster
input variables and the three other metrics compared to the NSRs, while
maintaining moderate separation for climate input variables (Table 3,
Figs. A2 and A3). The NSRs explained more variance of all climate and
terrain variables except topographic position (TPI) and sediment
thickness (SED). The largest difference between the two regionaliza-
tions were for disturbance of vegetation structure (NBR-sd) and forest
connectivity (FOR), where the EcoAnthromes reduced RSE by 50% and
48%, respectively, and for growing degree days (DD > 5) and the
summer-heat moisture index (SHM), where the NSRs reduced RSE by
78% and 51%, respectively (Table 3). Land cover classes alone ex-
plained little variance across all variables tested, but in general was
more strongly related to climate, terrain and vegetation than to dis-
turbance variables.

As anticipated, the EcoAnthromes more strongly reflected patterns
in land cover classes compared to the NSRs (Fig. 5; also see Figs. 1 and 3
and Fig. A1). Few of the NSRs are dominated by a single land cover
classes. Many are composed of mixed forest types along with shrubland,
or combinations of agriculture and grassland. By contrast, several of the
EcoAnthrome clusters represent relatively homogenous land cover
types, especially those that are highly disturbed (e.g., Clusters 5, 8, 15

and 17 are primarily agriculture or developed) or relatively undisturbed
(e.g., Clusters 13 and 19 are mostly barren; Clusters 9, 11 and 16 are
mostly coniferous forest; and Cluster 12 is mostly broadleaf forest).
EcoAnthromes with intermediate disturbance tended to be composed of
more land cover classes.

3.3. Multivariate analysis of EcoAnthromes

Each principal component (PC) represents unit-scaled linear com-
binations of all the input variables used in the analysis, and they are
transformed such that the first PC accounts for the largest possible
variance in the dataset, the second for the largest possible remaining
variance, and so forth. The first three PCs explained the majority of
variance in the EcoAnthrome dataset (Fig. 6), and each of the other PCs
composed < 7% of total variance (data not shown). Each PC rotation
can be analyzed based on the loadings of the original variables (Table
A4). Loadings are essentially a coefficient (positive or negative) in-
dicating the weight of each variable on each PC, and variables with
strong loadings (i.e., further from zero) within a PC capture a large
portion of the dataset's variance and are strongly related to each other.

Along the first PC rotation, climate variables related to warmer
temperature (e.g., DD > 5, MAT, INSOL) and standard deviation of
greenness (GRN-sd) had strong negative loadings, while chilling degree-
days (DD < 0), forest connectivity (FOR) and species intactness (SPP)
had strong positive loadings (Fig. 6 and Table A4). This PC highlights
the differences between areas most suitable for agriculture – those with
lower values for PC 1 (e.g., Clusters 5, 15 and 17) – and other colder
and less-arable climates with higher values (e.g., Clusters 2, 3 and 4).

Along the second PC rotation, the strongest loadings are related to
climate and topographic wetness (TWI), with strong positive loadings
for variables related to climate seasonality (e.g., TD, SHM) and TWI,
and strong negative loadings for MAP. EcoAnthromes with low values
along the second PC axis have low seasonality compared to the rest of
the province – most notably in the alpine and subalpine areas (clusters
13 and 14) where precipitation is consistently high and temperatures
consistently cool, and, to a lesser extent, in the foothills (clusters 11 and
12). Areas with positive values on the PC 2 axis have high seasonality,
and can be separated into clusters with longer, hotter summers (e.g.,
clusters 7 and 15 in the far south) and clusters with longer, colder
winters (e.g., cluster 4 in the far north).

The third PC rotation represents strong negative loadings for vari-
ables related to vegetation productivity (GRN, NBR,WET), human ac-
cess features (ACC) and nighttime lights (NTL). Moderately negative
loadings were also present for forest connectivity and temperature,

Fig. 2. Final dendrogram cut at 21 clus-
ters and heatmap of scaled input vari-
ables. The dendrogram is the output of
hierarchical clustering on 1001 k-means
pre-clusters. Three broad groupings are
highlighted by red rectangles and the final
EcoAnthrome cluster assignment (n = 21)
shown in colored bars, labeled by cluster
number. Cluster colors correspond to the
map in Fig. 3 and are relative to the most
disturbed (red), most vegetated (green) and
coldest/wettest (blue) clusters. Color value
(i.e., brightness) is adjusted such that
darker areas indicated increasing forest
connectivity. The heatmap grid shows the
rescaled value (0–1) of each input variable
(columns) for each pre-cluster (rows). The
codes for the input variable are given in
Table 1. (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the Web version of this
article.)
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whereas moderately positive loadings were found for species intactness
(SPP). EcoAnthromes with positive loading on this PC therefore re-
present areas with low forest connectivity, low human disturbance and
high species intactness, such as those representing recent fire dis-
turbance (clusters 10, 18 and 20), alpine regions (clusters 13 and 14),
and natural grasslands (cluster 7). Areas with negative values for this
PC likely represent areas of high natural forest productivity, over-
lapping with widespread anthropogenic activity.

Plotting these PC's together shows distinct patterns among the
EcoAnthromes. For example, in Fig. 6b, the lower right quadrant (po-
sitive for PC 1 and negative for PC 3) represents clusters with low an-
thropogenic disturbance and high forest productivity and connectivity,
whereas the lower-left quadrant represents clusters with high levels of
disturbance and high forest productivity, but low connectivity – likely
forests managed for logging. The upper two quadrants in Fig. 6b are
clusters with low forest productivity. Highly disturbed grasslands and
agriculture are in the upper-left quadrant, and extremely cold alpine
outcrops and subarctic shrublands are in the upper-right. Fig. 6c shows
recently fire-disturbed EcoAnthromes in the upper-right quadrant,
where seasonality is high and current forest productivity low. Varia-
bility between and within the three broad cluster groups can be seen in
Fig. 7 and the Supplementary Material.

4. Discussion

4.1. Description of EcoAnthromes

Our EcoAnthrome mapping approach highlights three distinct types
or groups of ecological conditions in Alberta. The first broad group
consists of areas with low levels of human impact, located in the ex-
tremely cold, barren, sodden, or high-elevation regions (e.g., alpine,
subalpine, subarctic, rocky and wetland areas), or within protected
parks. Here, species intactness tends to be high (see Fig. 7e), likely due
to minimal anthropogenic disturbance. Forest connectivity is generally
low due to climatic and soil limitations and/or frequent or recent fires.
One exception is cluster 14, which represents the montane valleys of the
Rocky Mountains, many of which are found within protected parks.

The second broad group includes mostly forested areas with inter-
mediate levels of disturbance relative to the other two broad groups.
Forest connectivity and species intactness is generally high, but vari-
able, as these areas include clusters with different forest types and
varying levels of disturbance. These areas represent the modern nexus
between anthropogenic and wild ecosystems, and are perhaps the most
important areas for EcoAnthrome mapping and monitoring. They are
rapidly changing as new infrastructure is developed and natural re-
source extraction continues, resulting in increased landscape change
with potential impact on habitat, biodiversity and ecosystem function.
Furthermore, they tend to be managed for complex and, at times,
contrasting outcomes, such as wildlife conservation, recreation, eco-
system services such as carbon and water storage and resource devel-
opment.

The third broad group includes areas with widespread and intensive
human activity, largely in the form of urban and agricultural centers
and industrial sites such as mining, oil and gas and forestry. These
EcoAnthromes are widespread across the flatter, warmer and more
arable landscapes such as the grassland, parkland and lower foothills
areas. They are, however, more geographically fragmented and con-
centrated around urban, agricultural and industrial centers. Here forest
connectivity and species intactness is generally low, and many of these
areas may be ‘novel’ ecosystems that are unlikely to occur in the ab-
sence of anthropogenic activity (Morse et al., 2014).

Within each of the three EcoAnthrome groups, we can find distinct
sub-groupings and gradients across individual EcoAnthromes. For ex-
ample, within the mostly forested EcoAnthromes in Group 2 there is
both a productivity gradient, corresponding to changes in climate, and
a fragmentation gradient, generally corresponding to increasing an-
thropogenic disturbance within the most productive forests in the
Rocky Mountain foothills adjacent to protected parks. These gradients
highlight how the EcoAnthromes approach differs from a land cover
map (e.g., Fig. 1) where differences in productivity or disturbance are
not captured within a single land cover (e.g., coniferous forests). A
complete description of the 21 individual EcoAnthromes is provided in
the Supplementary Material.

Fig. 3. EcoAnthrome regionalization of Alberta with 21 clusters. Output of
the two-stage clustering algorithm (cut at 21 clusters), using vegetation, dis-
turbance and human activity input variables (see Table 1 for a complete list).
Numbers are randomly assigned to each EcoAnthrome. Colors are discreetly
assigned to each cluster within the color space, such that red indicates in-
creasing human activity and disturbance, green indicates increasing vegetation
greenness, and blue indicates increasing precipitation and decreasing tem-
perature. The color value (i.e., brightness) is adjusted such that darker colors
indicate higher forest connectivity. Black areas are a mask of large waterbodies
and ice fields. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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4.2. Ecological patterns captured by EcoAnthromes

The broad EcoAnthrome groups in Alberta reflect the pattern of
anthropogenic activity observed at the global scale – essentially, wild-
lands in which anthropogenic disturbance is absent primarily exist only
in extremely cold, dry or barren landscapes, or within protected areas
(Ellis et al., 2010). Within Alberta, these areas tend to coincide,
meaning that the protected landscapes are relegated to some of the least
productive and potentially least biodiverse regions, again reflecting
patterns observed within Canada (Andrew et al., 2011) and globally

(Martin et al., 2014; ONeill and Abson, 2009). The area of the an-
thropogenic EcoAnthromes in Group 3 exceeds that of Developed,
Agricultural and Barren/Exposed land covers (Fig. 1) by over
90,000 km2 (about 14% of Alberta's land area), demonstrating how
estimates of human disturbance based on land cover alone may be
misleading.

Multi-variate analysis of ecological drivers and outcomes shows
how ecological patterns are being strongly driven by human activities,
and how the EcoAnthromes capture both anthropogenic and natural
patterns. Remotely sensed vegetation indicators were more strongly

Fig. 4. Diversity of EcoAnthromes within each Natural Subregion. Simpson's diversity index of EcoAnthrome clusters within each of the Natural Subregions of
Alberta, ordered by decreasing diversity.

Table 3
Explained variance of environmental and land-cover/disturbance variables by regionalization. Results are from regression analysis for each dependent variable, with
each regionalization/classification used separately as the independent variable. R2 is the coefficient of determination of each regression test. Natural Subregions were
developed by Natural Subregions Committee (2006) and 2010 Land Cover classes were developed by ABMI (2013). Variable descriptions and units are provided in
Section 2 and in Table 1.

Variable EcoAnthromes Natural Subregions Land Cover (2010)

R2

ENVIRONMENT Climate
Mean Annual Precipitation (MAP) 0.66 0.81 0.02
Mean Annual Temperature (MAT) 0.75 0.84 0.24
Temperature Difference (TD) 0.74 0.82 0.11
Summer Heat:Moisture Index (SHM) 0.59 0.83 0.14
Growing Degree Days (DD > 5) 0.73 0.92 0.08
Chilling Degree Days (DD < 0) 0.74 0.80 0.28

Terrain
Solar Insolation (INSOL) 0.63 0.72 0.16
Topographic Wetness Index (TWI) 0.45 0.54 0.22
Topographic Position Index (TPI) 0.61 0.22 0.00
Sediment thickness (SED) 0.57 0.13 0.05

LAND COVER & DISTURBANCE Land Cover and Vegetation
Average spectral Brightness (BRT) 0.69 0.48 0.03
Average spectral Greenness (GRN) 0.64 0.40 0.13
Average spectral Wetness (WET) 0.73 0.45 0.16
Average of Normalized Burn Ratio (NBR) 0.72 0.45 0.19
Forest Connectivity (FOR) 0.84 0.39 0.08

Disturbance
Standard deviation of GRN (GRN-sd) 0.72 0.38 0.01
Standard deviation of NBR (NBR-sd) 0.71 0.15 0.03

Human Activity
Nighttime lights disturbance index (NTL) 0.30 0.24 0.00
Access disturbance index (ACC) 0.50 0.49 0.07

OTHER Other Metrics
Fire intensity (FIRE) 0.40 0.13 0.01
Harvest intensity (HRVST) 0.07 0.05 0.00
Species Intactness (SPP) 0.63 0.52 0.17
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related to human activity than to climatic gradients, indicating that
anthropogenic disturbance is a key driver of vegetation structure and
composition. This trend is especially strong in warmer areas with a
longer growing season, where vegetation productivity is highest and
agricultural production and forest harvesting are profitable. Within
these regions, species intactness was strongly related to forest con-
nectivity, and inversely related to remotely-sensed indicators of an-
thropogenic disturbance (e.g., GRN-sd, NTL). Species intactness is
highest outside of these productive areas, in the coldest regions where
seasonality is high and winters are long and cold.

Geographic fragmentation was observed for disturbance-driven
EcoAnthromes. These include fire-related disturbances (e.g., Clusters
10, 18 and 20) and anthropogenic activity (e.g., Clusters 5, 6, 15 and
17). Both of these groups span relatively large areas and climatic ranges
(see Fig. 3 and Fig. A2) and represent ecosystems that are not well
captured by traditional regionalization approaches. The anthro-
pogenically-driven group includes impacted and potentially novel
ecosystems that would not otherwise exist in the absence of human
intervention (Morse et al., 2014). These, as well as the more anthro-
pogenically disturbed and fragmented clusters from Group 2 (e.g.,
Clusters 10, 11 and 12), could be good candidates for future research on
how ecosystems and individual species are responding to direct human
impacts. Meanwhile, other EcoAnthromes could act as important re-
ference sites and locations to study less direct human impacts, such as
climate change. Assessments of how species assemblages differ between
EcoAnthromes would elucidate the magnitude and permanence of an-
thropogenic ecosystem impacts.

4.3. Strengths, limitations and applications of the EcoAnthromes approach

While qualitative approaches do offer distinct benefits (Omernik
and Griffith, 2014), it is not practical to update expert-delineated maps
frequently to reflect recent ecosystem changes, or to assess change over
time. The temporal and spatial resolutions afforded by a quantitative
remote-sensing based regionalization can complement expert-based
approaches to support numerous applications for which this

information is required. For example, species recovery planning and
monitoring for grizzly bears and range planning efforts for woodland
caribou – both of which are listed threatened species in Alberta – could
integrate EcoAnthrome classifications into habitat models. The spatial
resolution of our classification enables analysis of connectivity within
and between distinct ecological regions and could support the prior-
itization needs of decision makers, such as where to undertake highway
mitigations for wildlife permeability (Alberta Environment and Parks,
2016). The EcoAnthromes will also support efforts to understand the
cumulative impacts of different disturbance types on wildlife. This is a
key component for setting disturbance thresholds such as those under
development in Alberta's Provincial Woodland Caribou Range Plan
(Government of Alberta, 2017b).

It is worth noting that characterizing landscapes around anthro-
pogenic influence could have unintended consequences if interpretation
and application is not carried out in tandem with other contextual in-
formation. For example, some decision makers may seek to push future
development into more disturbed areas in order to protect more ‘nat-
ural’ habitat elsewhere, potentially at the expense of less charismatic
species that are thriving in that area despite the influence of (or as a
result of) human activity. Additionally, using linear access and elec-
trified features as proxies for anthropogenic actions may not capture
foraging, hunting and other subsistence activities taking place in areas
we have highlighted as relatively ‘untouched’. Efforts to protect such
areas (e.g., for species conservation) may undermine the ability of in-
digenous peoples to carry out traditional practices. However, these
potential pitfalls of EcoAnthrome interpretation are not inherent to the
clustering process, and any number of variables could be included the
regionalization for specific applications.

Our quantitative clustering approach utilized primarily remotely
sensed inputs, offering some level of objectivity and repeatability. The
majority of the data we used as inputs was derived from freely available
satellite imagery and could therefore be developed for any area glob-
ally, including data-poor and remote regions. Our area of interest, the
province of Alberta, experienced widespread and intensive vegetation
disturbances during the study period and contains an extensive amount

Fig. 5. Land cover distribution of Natural Subregions and EcoAnthromes. Area of each Natural Subregion (left) and EcoAnthrome cluster (right), stratified by
2010 land cover classes (ABMI, 2013). Natural Subregions are ordered by total area. EcoAnthrome clusters are ordered by group (also see dendrogram in Fig. 2).
Color legend corresponds with Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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of electrified infrastructure detectable with NTL imagery. In regions
where anthropogenic disturbance concerns are less associated with
changes in vegetation or electrified infrastructure (e.g., non-point
source water contamination, air pollution, poaching, etc.), different or
additional input data is likely required to produce useful
EcoAnthromes.

The variables we chose to represent disturbances captured dis-
turbance-related landscape patterns relevant to Alberta, such as agri-
cultural activity, urban and industrial development, recent fires and, to
a lesser extent, harvesting. Applications to other regions, or at different
scales, may need to use different variables to produce a regionalization
relevant to their objectives. In our application, EcoAnthromes represent
varying levels of disturbance and post-disturbance recovery, especially
for fires. Variance of forest harvesting intensity was not captured as
clearly by the clusters (Fig. A4), perhaps due to the high heterogeneity
of harvesting practices, locations and timing. In general, areas har-
vested in the latter half of the study period (2011–2015) were grouped
into clusters with recent fire disturbance (Clusters 10 and 20), areas
harvested in the first half (2006–2010) were grouped with agricultural
and urban clusters where GRN and NBR were low and variable (Clusters
5, 6 and 17), and areas harvested prior to 2006 were broadly grouped
with road margins, sparsely treed areas and fragmented broadleaf for-
ests (Clusters 1 and 12). More work is needed to determine the degree
to which harvested areas indeed share characteristics with these clus-
ters. It is possible that more complex forest disturbance and fragmen-
tation metrics (e.g., patch size, edge density) would better capture the

ecological outcomes of forest harvesting and regeneration (Wulder
et al., 2008).

Finally, the two-stage approach allowed us to create a hierarchical
clustering framework that would not otherwise be possible due to
computational limitations. This framework helped to understand and
interpret ecological patterns and provides flexibility for scaling
EcoAnthrome classification as appropriate for specific applications. We
chose a 21-class regionalization for intuitive comparison against the 21
NSRs of Alberta. Examination of the dendrogram (Fig. 2) and cluster
validity metrics (data not shown) suggest that increasing the number of
clusters to between 26 and 34 could further improve results at the
provincial scale. The two-stage approach provides the flexibility to
delineate EcoAnthromes at various scales to meet research and man-
agement objectives. More research is needed to evaluate the applic-
ability of the hierarchical clustering structure developed at a broad
scale (e.g., the provincial level) to landscape characterization at local
scales, and to determine when new clustering should be performed to
meet scale-specific management objectives.

5. Conclusion

Our example of an EcoAnthrome regionalization for Alberta
achieved our stated goal to develop a quantitative, 30 m spatial re-
solution regionalization approach that identifies areas with unique
ecological characteristics related to both natural and anthropogenic
disturbances. The two-stage approach allowed for EcoAnthrome

Fig. 6. Distance bi-plots of the first three principal components (PC's) of inputs and metrics. Bi-plots are (a) PC 1 vs. PC 2, (b) PC 1 vs. PC 3, and (c) PC 2 vs. PC
3. Colored points represent a stratified random sample of cells within each cluster. The color legend corresponds to the map in Fig. 3 and is relative to the most
disturbed (red), most vegetated (green) and coldest/wettest (blue) clusters. Color value (i.e., brightness) is adjusted such that darker areas indicated increasing forest
connectivity. Variable abbreviations are given in Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version
of this article.)
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clustering at moderately-high spatial resolution across a broad extent
using a large number of input variables, and the hierarchical framework
provided greater insight and flexibility for use at multiple scales. Nearly
all input variables were derived from freely available remotely sensed
data. Furthermore, the approach is flexible insofar as input variables
and their weightings can be adjusted depending on the scale and ob-
jectives of a given application. As the accessibility and spatio-temporal
resolution of spaceborne, airborne (e.g., drone imagery, airborne laser

scanning) and crowdsourced (e.g., camera traps, mobile app inputs)
spatial data continues to increase, so too will our ability to incorporate
disturbance and human activity into ecological regionalizations. This is
important as conservation biologists increasingly call for biodiversity
protection in habitats under direct human influence (Martin et al.,
2014).

Compared to the expert-derived Natural Subregions in Alberta, the
EcoAnthromes showed greater class separation and explained more

Fig. 7. Box and whisker plots of disturbance and biodiversity across EcoAnthromes. Sample distributions for select variables related to disturbance (a, b, c),
built infrastructure (d) and overall species intactness (e). Black lines represent class medians, boxes are the 25th to 75th percentiles and whiskers are the 2.5th and
97.5th percentiles of the sample distribution. Horizontal red lines indicate the overall observed mean across all classes. Colors correspond to the map in Fig. 3 and are
relative to the most disturbed (red), most vegetated (green) and coldest/wettest (blue) clusters. Groupings are derived from the hierarchical clustering process and
are described in Section 3.1 and 4.1 (also see Fig. 2).
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variance for an assortment of variables related to land cover, dis-
turbance and species intactness. The EcoAnthromes represent im-
portant ecological conditions that are defined by complex assemblages
of topography, climate and disturbance, ranging from intact gravel-bed
river valleys, boreal forests and grasslands to post-fire recovery areas to
highly disturbed agricultural, industrial and urban landscapes. The
disturbance-informed EcoAnthrome approach complements, rather
than replaces, existing ecological regionalizations. We anticipate that it
will prove valuable to support ecosystem management and conserva-
tion applications in Alberta (e.g., planning and monitoring for the re-
covery of threatened species), and encourage application and testing of
disturbance-informed ecological regionalization approaches elsewhere.
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